
www.manaraa.com

CENTRO PER LA RICERCA

SCIENTIFICA E TECNOLOGICA

38050 Povo (Trento), Italy
Tel.: +39 0461 314312
Fax: +39 0461 302040
e−mail: prdoc@itc.it − url: http://www.itc.it

TROPOS: AN AGENT−ORIENTED SOFTWARE
DEVELOPMENT METHODOLOGY

Bresciani P., Giorgini P., Giunchiglia F.,
Mylopoulos J., Perini A.

December 2002

Technical Report # 0212−82

 Istituto Trentino di Cultura, 2002

LIMITED DISTRIBUTION NOTICE

This report has been submitted for
publication outside of ITC and will probably be copyrighted if accepted for publication. It has been
issued as a Technical Report for
early dissemination of its contents. In view of the transfert of copy right to
the outside publisher, its
distribution outside of ITC prior
to publication should be limited to peer communications and specific
requests. After outside publication,
material will be available only in
the form authorized by the copyright owner.

www.manaraa.com

www.manaraa.com

Tropos: An Agent-Oriented Software DevelopmentMethodologyPaolo BresianiITC-Irst - Povo (Trento) - Italy - bresiani�irst.it.itPaolo GiorginiDepartment of Information and Communiation TehnologyUniversity of Trento - Italy - paolo.giorgini�dit.unitn.itFausto GiunhigliaDepartment of Information and Communiation TehnologyUniversity of Trento - Italy - fausto�dit.unitn.itJohn MylopoulosDepartment of Computer Siene - University of Toronto - Canada -jm�s.toronto.eduAnna PeriniITC-Irst - Povo (Trento) - Italy - perini�irst.it.itJanuary 16, 2003Abstrat.Our goal in this paper is to introdue and motivate a methodology, alled Tro-pos,1 for building agent oriented software systems. Tropos is based on two key ideas.First, the notion of agent and all related mentalisti notions (for instane goals andplans) are used in all phases of software development, from early analysis downto the atual implementation. Seond, Tropos overs also the very early phases ofrequirements analysis, thus allowing for a deeper understanding of the environmentwhere the software must operate, and of the kind of interations that should ourbetween software and human agents. The methodology is illustrated with the helpof a ase study. The Tropos language for oneptual modeling is formalized in ametamodel desribed with a set of UML lass diagrams.Keywords: Agent-Oriented Software Engineering, Multi-Agent Systems, and Agent-Oriented Methodologies 1. IntrodutionAgent oriented programming (AOP, from now on) is most often moti-vated by the need for open arhitetures that ontinuously hange andevolve to aommodate new omponents and meet new requirements.More and more, software must operate on di�erent platforms, withoutreompilations, and with minimal assumptions about its operating en-vironment and users. It must be robust, autonomous and proative.1 From the Greek \trop�e", whih means \easily hangeable", also \easilyadaptable". 2003 Kluwer Aademi Publishers. Printed in the Netherlands.
jaa-mas.tex; 16/01/2003; 18:43; p.1

www.manaraa.com

2 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. PeriniExamples of appliations where AOP seems most suited and whihare widely quoted in literature [31, 33℄ are eletroni ommere, en-terprise resoure planning, air-traÆ ontrol systems, personal digitalassistants, and so on.To qualify as an agent, a software or hardware system is often re-quired to have properties suh as autonomy, soial ability, reativity,and proativity. Other attributes whih are sometimes required [33℄are mobility, veraity, rationality, and thee like. The key that makesa software system possess these properties is that it is oneived andprogrammed at a knowledge level [23℄. Thus, in AOP, we talk of mentalstates and beliefs instead of mahine states, of plans and ations insteadof proedures and methods, of ommuniation, negotiation and soialability instead of interation and I/O funtionalities, of goals, desires,and so on. Expliit representations of suh mental notions provide, atleast in part, the software with the extra exibility needed in order todeal with the intrinsi omplexity of appliations suh as those men-tioned earlier. The expliit representation and manipulation of goalsand plans failitates, for instane, a run-time adaptation of systembehavior in order to ope with unforeseen irumstanes, or for a moremeaningful interation with other human and software agents.We are de�ning a software development methodology, alled Tropos,whih allows us to exploit all the exibility provided by AOP. In anutshell, the two novel features of Tropos are:1. The notion of agent and related mentalisti notions are used inall software development phases, from early requirements analy-sis down to the atual implementation. Our mentalisti notionsare founded on BDI (Belief, Desire, and Intention) agent arhite-tures [28℄.2. A ruial role is given to early requirements analysis that preedesthe presriptive requirements spei�ation of the system-to-be. Thismeans that we inlude in our methodology earlier phases of thesoftware development proess than those supported by other agentor objet oriented software engineering methodologies (see Setion 6for a detailed disussion). We onsider this move as ruial in orderto ahieve our objetives.The idea of fousing the ativities that preede the spei�ation ofsoftware requirements, in order to understand how the intended systemwill meet organizational goals, is not new. It has been �rst proposedin requirements engineering, see for instane [13, 36℄, and spei�allyin Eri Yu's work with his i* model. This model has been appliedin various appliation areas, inluding requirements engineering [35℄,
jaa-mas.tex; 16/01/2003; 18:43; p.2

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 3business proess reengineering [39℄, and software proess modeling [38℄.The i* model o�ers ators, goals and ator dependenies as primitiveonepts [36℄. The main motivation underlying this earlier work wasto develop a riher oneptual framework for modeling proesses whihinvolve multiple partiipants (both humans and software systems). Therationale of the i* model is that by doing an earlier analysis, one anapture not only the what or the how, but also the why a piee ofsoftware is developed. This, in turn, supports a more re�ned analysisof system dependenies and enourages a uniform treatment of thesystem's funtional and non-funtional requirements.Neither Yu's work, nor, as far as we know, any earlier work on re-quirements analysis was developed with AOP in mind. The appliationof these ideas to AOP, and the deision to use mentalisti notions in allphases of analysis, has important onsequenes. While developing agentoriented spei�ations and programs, one uses the same notions andabstrations used to desribe the behavior of human or soial agents,and the proesses involving them. The oneptual gap from what thesystem must do and why, and what the users interating with it mustdo and why, is redued to a minimum, thus providing (part of) theextra exibility needed to ope with appliation omplexities.Indeed, the software engineering methodologies and spei�ationlanguages developed for Objet-Oriented Programming (OOP) supportonly phases from arhitetural design downwards. This means thatthere is no formal aount or analysis of the onnetion between theintentions of the di�erent stakeholders (human, soial or otherwise) andthe system-to-be. By using UML, for instane, the software engineer anstart with use ase analysis (possibly re�ned with ativity diagrams)and then move to arhitetural design. In this phase, the engineer ando stati analysis using lass diagrams, or dynami analysis using, forinstane, sequene or interation diagrams. The target is to reah indetail of abstration level of the atual lasses, methods and attributesused to implement the system. However, while applying this approahand related tehniques to AOP, the software engineer misses most of theadvantages oming for the fat that in AOP one oneives of programsat the knowledge level. UML fores the programmer to translate goalsand other mentalisti notions into software level notions, for instanelasses, attributes and methods of lass diagrams. Consequently, theformer notions must be reintrodued in the programming phase. Thework on AUML [2, 25℄, though relevant in that it provides a �rst map-ping from OOP to AOP spei�ations, is an example of work su�eringfrom this kind of problem.The objetive of this paper is to introdue and motivate the Troposmethodology, in all its phases. Consisteny heking for Tropos models
jaa-mas.tex; 16/01/2003; 18:43; p.3

www.manaraa.com

4 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniis disussed in [16℄ and [17℄. In addition, [7℄ presents a omplementaryase study of the Tropos methodology.The paper is strutured as follows. Setion 2 introdues the oreonepts of the Tropos methodology and provides an early glimpseof how the methodology works. The methodology is then desribedin Setion 3, as applied to eCulture system example, a fragment of aweb-based broker of ultural information and servies developed forthe government of Trentino (Provinia Autonoma di Trento, or PAT).The Tropos modeling language and its diagrammati representationare introdued �rst, while a more preise de�nition of the developmentproess is given in Setion 4. The desription of the metamodel of thespei�ation language is given in Setion 5. A disussion of related workis presented in Setion 6, while Setion 7 summarizes the results of thepaper and o�ers diretions for future work.2. The methodologyThe Tropos methodology is intended to support all analysis and de-sign ativities in the software development proess, from appliationdomain analysis down to the system implementation. In partiular,Tropos rests on the idea of building a model of the system-to-be andits environment, that is inrementally re�ned and extended, providinga ommon interfae to various software development ativities, as wellas a basis for doumentation and evolution of the software.In the following, we introdue the �ve main development phasesof the Tropos methodology: Early Requirements, Late Requirements,Arhitetural Design, Detailed Design and Implementation. The lastfour phases are well-established in the Software Engineering literatureand are supported by various methodologies and tools. The �rst one(early requirements analysis) is well aepted in the Requirements En-gineering researh ommunity, but not widely pratied. We then de�nethe basi notions to be modeled during eah one of these phases andthe tehniques that guide model re�nement. Finally, we desribe themodeling ativities performed during the �ve phases pointing out howthe modeling fous shifts with the proess.2.1. Development phasesRequirements analysis represents the initial phase in many softwareengineering methodologies. As with other approahes, the ultimate ob-jetive of requirement analysis in Tropos is to provide a set of funtionaland non-funtional requirements for the system-to-be.
jaa-mas.tex; 16/01/2003; 18:43; p.4

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 5Requirements analysis in Tropos is split in two main phases: EarlyRequirements and Late Requirements analysis. Both share the sameoneptual and methodologial approah. Thus most of the ideas in-trodued for early requirements analysis are used for late requirementsas well. More preisely, during the �rst phase, the requirements en-gineer identi�es the domain stakeholders and models them as soialators, who depend on one another for goals to be ahieved, plans tobe performed, and resoures to be furnished. By learly de�ning thesedependenies, it is then possible to state the why, beside the what andhow, of the system funtionalities and, as a last result, to verify how the�nal implementation mathes initial needs. In the Late Requirementsanalysis, the oneptual model is extended inluding a new ator, whihrepresents the system, and a number of dependenies with other atorsof the environment. These dependenies de�ne all the funtional andnon-funtional requirements of the system-to-be.The Arhitetural Design and the Detailed Design phases fous onthe system spei�ation, aording to the requirements resulting fromthe above phases. Arhitetural Design de�nes the system's global ar-hiteture in terms of subsystems, interonneted through data andontrol ows. Subsystems are represented, in the model, as ators anddata/ontrol interonnetions are represented as dependenies. Thearhitetural design provides also a mapping of the system ators toa set of software agents, eah haraterized by spei� apabilities.The Detailed Design phase aims at speifying agent apabilities andinterations. At this point, usually, the implementation platform hasalready been hosen and this an be taken into aount in order toperform a detailed design that will map diretly to the ode.1The Implementation ativity follows step by step, in a natural way,the detailed design spei�ation on the basis of the established map-ping between the implementation platform onstruts and the detaileddesign notions.2.2. The key oneptsModels in Tropos are aquired as instanes of a oneptual metamodelresting on the following onepts/relationships:Ator, whih models an entity that has strategi goals and intention-ality within the system or the organizational setting. An atorrepresents a physial, soial or software agent as well as a role or1 Notie that Tropos (as well as other agent-oriented software engineeringmethodologies) an be used independently of the fat that one uses AOP asimplementation tehnology.
jaa-mas.tex; 16/01/2003; 18:43; p.5

www.manaraa.com

6 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniposition. While we assume the lassial AI de�nition of softwareagent, that is, a software having properties suh as autonomy,soial ability, reativity, proativity, as given, for instane in [24℄,in Tropos we de�ne a role as an abstrat haraterization of thebehavior of a soial ator within some speialized ontext or do-main of endeavor, and a position represents a set of roles, typiallyplayed by one agent. An agent an oupy a position, while aposition is said to over a role. A disussion on this issue an befound in [37℄.Goal, whih represents ators' strategi interests. We distinguish hardgoals from softgoals, the seond having no lear-ut de�nitionand/or riteria for deiding whether they are satis�ed or not. A-ording to [8℄, this di�erent nature of ahievement is underlinedby saying that goals are satis�ed while softgoals are satis�ed.Softgoals are typially used to model non-funtional requirements.For simpliity, In the rest of the paper goals refer to hard goalswhen there is no danger of onfusion.Plan, whih represents, at an abstrat level, a way of doing something.The exeution of plan an be a means for satisfying a goal or forsatis�ing a softgoal.Resoure, whih represents a physial or an informational entity.Dependeny between two ators, whih indiates that one ator de-pends, for some reason, on the other in order to attain some goal,exeute some plan, or deliver a resoure. The former ator is alledthe depender, while the latter is alled the dependee. The objetaround whih the dependeny enters is alled dependum. In gen-eral, by depending on another ator for a dependum, an ator isable to ahieve goals that it would otherwise be unable to ahieveon its own, or not as easily, or not as well. At the same time, thedepender beomes vulnerable. If the dependee fails to deliver thedependum, the depender would be adversely a�eted in its abilityto ahieve its goals.Capability, whih represents the ability of an ator of de�ning, hoos-ing and exeuting a plan for the ful�llment of a goal, given ertainworld onditions and in presene of a spei� event.Belief, whih represents ator knowledge of the world.These notions are more formally spei�ed syntatially in the languagemetamodel desribed in Setion 5.
jaa-mas.tex; 16/01/2003; 18:43; p.6

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 72.3. Modeling ativitiesVarious ativities ontribute to the aquisition of a �rst early require-ment model, to its re�nement and to its evolution into subsequentmodels. They are:Ator modeling, whih onsists of identifying and analyzing both theators of the environment and the system's ators and agents.In partiular, in the early requirement phase ator modeling fo-uses on modeling the appliation domain stakeholders and theirintentions as soial ators whih want to ahieve goals. Duringlate requirement, ator modeling fouses on the de�nition of thesystem-to-be ator, whereas in arhitetural design, it fouses onthe struture of the system-to-be ator speifying it in terms of sub-systems (ators), interonneted through data and ontrol ows.In detailed design, the system's agents are de�ned speifying allthe notions required by the target implementation platform, and�nally, during the implementation phase ator modeling orre-sponds to the agent oding.Dependeny modeling, whih onsists of identifying ators whihdepend on one another for goals to be ahieved, plans to be per-formed, and resoures to be furnished. In partiular, in the earlyrequirement phase, it fouses on modeling goal dependenies be-tween soial ators of the organizational setting. New dependeniesare eliited and added to the model upon goal analysis performedduring the goal modeling ativity disussed below. During laterequirements analysis, dependeny modeling fouses on analyzingthe dependenies of the system-to-be ator. In the arhiteturaldesign phase, data and ontrol ows between sub-ators of thesystem-to-be ators are modeled in terms of dependenies, provid-ing the basis for the apability modeling that will start later inarhitetural design together with the mapping of system atorsto agents.A graphial representation of the model obtained following thesemodeling ativities is given through ator diagrams (see Setion 5 formore details), whih desribe the ators (depited as irles), their goals(depited as ovals and loud shapes) and the network of dependenyrelationships among ators (two arrowed lines onneted by a graph-ial symbol varying aording to the dependum: a goal, a plan or aresoure). An example is given in Figure 1.Goal modeling rests on the analysis of an ator goals, ondutedfrom the point of view of the ator, by using three basi rea-
jaa-mas.tex; 16/01/2003; 18:43; p.7

www.manaraa.com

8 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perinisoning tehniques: means-end analysis, ontribution analysis, andAND/OR deomposition. In partiular, means-end analysis aims atidentifying plans, resoures and softgoals that provide means forahieving a goal. Contribution analysis identi�es goals that anontribute positively or negatively in the ful�llment of the goalto be analyzed. In a sense, it an be onsidered as an extension ofmeans-end analysis, with goals as means. AND/OR deompositionombines AND and OR deompositions of a root goal into sub-goals, modeling a �ner goal struture. Goal modeling is applied toearly and late requirement models in order to re�ne them and toeliit new dependenies. During arhitetural design, it ontributesto motivate the �rst deomposition of the system-to-be ators intoa set of sub-ators.Plan modeling an be onsidered as an analysis tehnique omple-mentary to goal modeling. It rests on reasoning tehniques anal-ogous to those used in goal modeling, namely, means-end, ontribu-tion analysis and AND/OR deomposition. In partiular, AND/ORdeomposition provides an AND and OR deompositions of a rootplan into sub-plans.A graphial representation of goal and planmodeling is given throughgoal diagrams, see, for instane, Figure 3 but also Setion 5 for moredetails.Capability modeling starts at the end of the arhitetural designwhen system sub-ators have been spei�ed in terms of their owngoals and the dependenies with other ators. In order to de�ne,hoose and exeute a plan for ahieving its own goals, eah system'ssub-ator has to be provided with spei� \individual" apabili-ties. Additional \soial" apabilities should be also provided formanaging dependenies with other ators. Goals and plans previ-ously modeled beome integral part of the apabilities. In detaileddesign, eah agent's apability is further spei�ed and then odedduring the implementation phase.A graphial representation of these apabilities is given by apabilityand plan diagrams. UML ativity diagrams (see Figure 9 for an exam-ple) and AUML interation diagrams [25℄ (Figure 11) are used to thispurpose (more details in Setion 5).

jaa-mas.tex; 16/01/2003; 18:43; p.8

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 93. An exampleIn this setion we go through and disuss the �ve Tropos phases viaa substantial ase study. The example onsidered is a fragment of areal appliation developed for the government of Trentino (ProviniaAutonoma di Trento, or PAT). In the exposition, the example has beensuitably modi�ed to take into aount a non dislosure agreement andalso to make it simpler and therefore more easily understandable. Thesystem (whih we will all throughout the eCulture system) is a web-based broker of ultural information and servies for PAT, inludinginformation obtained from museums, exhibitions, and other ulturalorganizations and events [18℄. It is the government's intention that thesystem be usable by a variety of users, inluding Trentino itizens andtourists, looking for things to do, or sholars and students looking formaterial relevant to their studies.3.1. Early Requirements AnalysisEarly Requirements analysis onsists of identifying and analyzing thestakeholders and their intentions. Stakeholders are modeled as soialators who depend on one another for goals to be ahieved, plans tobe performed, and resoures to be furnished. Intentions are modeledas goals whih, through a goal-oriented analysis, are deomposed into�ner goals, that eventually an support evaluation of alternatives.In our eCulture example we an start by informally listing (someof) the stakeholders:� Provinia Autonoma di Trento (PAT), that is the governmentageny funding the projet; its objetives inlude improving publiinformation servies, inreasing tourism through new informationservies, also enouraging Internet use within the provine.� Museums, that are the major ultural information providers fortheir respetive olletions; museums want government funds tobuild/ improve their ultural information servies, and are willingto interfae their systems with other ultural systems or servies.� Visitors, who want to aess ultural information, before or dur-ing their visit to Trentino, to make their visit interesting and/orpleasant.� (Trentino) Citizens, who want easily aessible information, of anysort, and (of ourse) good administration of publi resoures.
jaa-mas.tex; 16/01/2003; 18:43; p.9

www.manaraa.com

10 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini

increase
internet use

get cultural
information

Citizen

Visitor

enjoy visit

Actor

 Softgoal
dependency

depender

dependum

dependee

PAT

taxes well
spent

Hardgoal

Softgoal

Museum

provide
cultural
services

Figure 1. Ator diagram modeling the stakeholders of the eCultural projet.Figure 1 shows the ator diagram for the eCulture domain. In par-tiular, Citizen is assoiated with a single relevant goal: get ulturalinformation, while Visitor has an assoiated softgoal enjoy visit. Alongsimilar lines, PAT wants to inrease internet use while Museum wantsto provide ultural servies. Finally, the diagram inludes one softgoaldependeny where Citizen depends on PAT to ful�ll the taxes well spentsoftgoal.One the stakeholders have been identi�ed, along with their goalsand soial dependenies, the analysis proeeds in order to enrih themodel with further details. In partiular, the rationale of eah goalrelative to the stakeholder who is responsible for its ful�llment has tobe analyzed. Basially, this is done through means-end analysis andgoal/plan deomposition. It is important to stress that what goals areassoiated with eah ator is a deision of the orresponding stake-holder, not the design team.A �rst example of the result of suh an analysis from the perspe-tive of Citizen and Visitor is given by the goal diagrams depited inFigure 2. For the ator Citizen, the goal get ultural information isdeomposed into visit ultural institutions and visit ultural web systems.These two subgoals an be seen as alternative ways of ful�lling the goalget ultural information (and we will all this a \OR-deomposition").Goal deomposition an be losed through a means-end analysis aimedat identifying plans, resoures and softgoals that provide means forahieving the goal. For example, the plan (depited as a hexagon) visiteCulture System is a means to ful�ll the goal visit ultural web systems.
jaa-mas.tex; 16/01/2003; 18:43; p.10

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 11
visit cultural
institutions

visit
eCulture
System

use
eCulture
System

access
internet

get cultural
information

Visitor

enjoy visit

plan a visit

eCulture
System

available

PAT

internet
infrastructure

available

Actor perspective
AND decomposition

+

visit cultural
web systems

usable
eCulture
Sysyem

ContributionOR decomposition

Plan

+/-

Citizen

Figure 2. Goal diagrams for Citizen and Visitor. Notie the goal and plan deompo-sition, the means-end analysis and the (positive)softgoal ontribution.This plan an be deomposed into sub-plans, namely use eCulture Sys-tem and aess internet. These two sub-plans beome the reasons for aset of dependenies between Citizen and PAT: eCulture System available,internet infrastruture available and usable eCulture System. The analysisfor Visitor is simpler: planning a visit an give a positive ontributionto the goal enjoy visit, and for this the Visitor needs the eCulture Systemtoo.A seond example, in Figure 3, shows portions of the goal analysisfor PAT, relative to the goals that Citizen delegates to PAT as a resultof the previous analysis. The goals inrease internet use and eCultureSystem available are both well served by the goal build eCulture System.Inside the ator diagram, softgoal analysis is performed identifying thegoals that ontribute positively or negatively to the softgoal. The soft-
jaa-mas.tex; 16/01/2003; 18:43; p.11

www.manaraa.com

12 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini

increase
internet use

PAT

internet
infrastructure

available

eCulture
System

available

reasonable
expenses

good cultural
services

fundig
museums for
own systems

good
services

build
eCulture
System

offer
inexpensive
infrastructure

+

+

+

+

+

+

+

provide
eCultural
services

Means-ends analysis

educate
citizens provide

interesting
systems

taxes well
spent

Figure 3. Goal diagram for PAT.goal taxes well spent gets positive ontributions from the softgoal goodservies, and, in the end, from the goal build eCulture System too.The �nal result of this phase is a set of strategi dependenies amongators, built inrementally by performing goal/plan analysis on eahgoal, until all goals have been analyzed. Goals lower down in a goalhierarhy are more spei�, and are motivated by goals higher up inthe hierarhy. For instane, in the example in Figure 3, the goal buildeCulture System is motivated by its two supergoals.3.2. Late Requirements AnalysisLate requirement analysis fouses on the system-to-be (the eCultureSystem in our ase) within its operating environment, along with rel-evant funtions and qualities. The system-to-be is represented as oneator whih has a number of dependenies with the other ators of theorganization. These dependenies de�ne the system's funtional andnon-funtional requirements.
jaa-mas.tex; 16/01/2003; 18:43; p.12

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 13
PAT

eCulture
System

provide
eCultural
services

available
eCulture
System

portable

scalable

use internet
technology

+

+

+

+

make
reservations

provide
info

educational
services

cultural infologistic info

extensible
eCulture
System

flexible
eCulture
System

usable
eCulture
System

user friendly
eCulture
System

virtual visits

+

temporal
availabilityFigure 4. A portion of the ator diagram inluding PAT and eCulture System andgoal diagram of the eCulture System.The ator diagram in Figure 4 inludes the eCulture System andshows a set of goals and softgoals that PAT delegates to it. In partiular,the goal provide eCultural servies, whih ontributes to the main goalof PAT inrease internet use (see Figure 3), and the softgoals extensibleeCulture System, exible eCulture System, usable eCulture System, anduse internet tehnology. These goals are then analyzed from the point ofview of the eCulture System. In Figure 4 we onentrate on the analysisof the goal provide eCultural servies and the softgoal usable eCultureSystem. The goal provide eCultural servies is deomposed (AND deom-position) into four subgoals: make reservations, provide info, eduationalservies and virtual visits. As basi eCultural servie, the eCulture Systemmust provide information (provide info), whih an be logisti info, andultural info. Logisti info onerns, for instane, timetables and visiting
jaa-mas.tex; 16/01/2003; 18:43; p.13

www.manaraa.com

14 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniinstrutions for museums, while ultural info onerns the ultural on-tent of museums and speial ultural events. This ontent may inludedesriptions and images of historial objets, the desription of an ex-hibition, and the history of a partiular region. Virtual visits are serviesthat allow, for instane, Citizen to pay a virtual visit to a ity of the past(Rome during C�sar's time!). Eduational servies inludes presentationof historial and ultural material at di�erent levels (e.g., high shoolor undergraduate university level) as well as on-line evaluation of thestudent's grasp of this material. Make reservations allows the Citizento make reservations for partiular ultural events, suh as onerts,exhibitions, and guided museum visits.Softgoal ontributions an be identi�ed applying the same kind ofanalysis desribed by the goal diagram of Figure 3. So for instane,the softgoal usable eCulture System has two positive (+) ontributionsfrom softgoals user friendly eCulture System and available eCulture Sys-tem. The former ontributes positively beause a system must be userfriendly to be usable, whereas the latter ontributes positively beauseit makes the system portable, salable, and available over time (temporalavailability).Often, some dependenies in the ator diagram must be revised uponthe introdution of the system ator. We have seen in Figure 2 that forCitizen a possible subplan of getting eCultural info is using an eCul-ture system. Now we an model this in terms of a diret dependenybetween the ators Citizen and eCulture System. Figure 5 shows howthis dependeny is analyzed inside the goal diagram of the eCultureSystem. The goal searh information (a subgoal of the goal provide info)an be ful�lled by four di�erent plans: searh by area (themati area),searh by geographial area, searh by keyword, and searh by time period.The deomposition into sub-plans is almost the same for all four kindsof searh. For example, the sub-plan get info on area is deomposedin �nd info soures, that �nds whih information soures are moreappropriate to provide information onerning the spei�ed area, andthe sub-plan query soures, that queries the information soures. Thesub-plan �nd info soures depends on the museums for the desriptionof the information that the museums an provide, i.e., the resouredependeny info about soure (a retangle in Figure 5), and synthesizeresults depends on museums for query result. Finally, in order to searhinformation about a partiular themati area, the Citizen is required toprovide information using an area spei�ation form.The analysis onduted so far is intended to provide a ontext withinwhih the system-to-be is to be designed. Skipping this analysis an leadto misunderstandings about what the system should be doing or thespeial qualities it should possess. Indeed, it has been well doumented
jaa-mas.tex; 16/01/2003; 18:43; p.14

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 15
eCulture
System

get cultural
information

search
information

search by
geographical

area

search by
area

get info on
area

clssify
area

synthesize
results

query
sources

find info
sources

area
specification

form

info about
source query result

Museum

search by
keywords

search by
time period

Citizen

Figure 5. Goal diagram for the goal get ultural information and dependeniesbetween the ator eCulture System and other environment' ators.in the Software Engineering literature that many software faults andfailures originate in misunderstood requirements [1℄.3.3. Arhitetural DesignThe arhitetural design phase de�nes the system's global arhiteturein terms of subsystems (ators) interonneted through data and on-trol ows (dependenies). This phase is artiulated in three steps, asfollows.Step 1. As �rst step, the overall arhitetural organization is de�ned.New ators (inluding sub-ators) are introdued in the system as aresult of analysis performed at di�erent levels of abstration, suh as:� inlusion of new ators and delegation of subgoals to sub-atorsupon goal analysis of system's goals;
jaa-mas.tex; 16/01/2003; 18:43; p.15

www.manaraa.com

16 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini
provide info

educational
services

make
reservations virtual visits

provide
interface

Info
Broker Educational

Broker
Reservation

Broker
Virtual Visit

Broker
System

Manager

system
interfacing

user
interfacing

System
Interface
Manager

User
Interface
Manager

eCulture
System

Figure 6. Ator diagram for the eCulture System arhiteture (step 1).� inlusion of new ators aording to the hoie of a spei� ar-hitetural style (see [15, 21℄ for more details about the use ofarhitetural patterns and styles);� inlusion of ators ontributing positively to the ful�llment of somenon-funtional requirements.Figure 6 shows the deomposition in sub-ators of the eCulture Systemand the delegation of some goals from the eCulture System to them.The eCulture System depends on the Info Broker to provide info, on theEduational Broker to provide eduational servies, on the ReservationBroker to make reservations, on Virtual Visit Broker to provide virtualvisits, and on System Manager to provide interfae. Additionally, eahsub-ator an be itself deomposed in sub-ators responsible for theful�llment of one or more sub-goals.The �nal result of this �rst step is an extended ator diagram, inwhih new ators and their dependenies with the other ators arepresented. Figure 7 shows the extended ator diagram with respet tothe Info Broker and the assigned plan searh by area. The User InterfaeManager and the Soures Interfae Manager are responsible for interfa-
jaa-mas.tex; 16/01/2003; 18:43; p.16

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 17
Area

Classifier

Info
Searcher

Info
Broker

area
information

query
information

Results
Synthesizerarea

specification
form

area
informationCitizen

Interfacing
to the eCulture

System

interfacing
to the users

services
information

Services
Broker

services
description

Sources
Broker

sources
information

interfacing
to sources

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Figure 7. Extended ator diagram w.r.t. the Info Broker (step 1).ing the system to the external ators Citizen and Museum. The ServiesBroker and Soures Broker have been also introdued to failitate generiinterations outside the system. Servies Broker manages a repository ofdesriptions for servies o�ered by ators within the eCulture System.Analogously, Soures Broker manages a repository of desriptions forinformation soures available outside the system.The three sub-ators: the Area Classi�er, the Results Synthesizer, andthe Info Searher (Figure 7) have been introdued upon the analysis ofthe plan searh by area reported in Figure 5. Area Classi�er is responsiblefor the lassi�ation of the information provided by the user. It dependson the User Interfae Manager for interfaing to the users, and on theServie Broker to have information about the servies provided by otherators. The Info Searher depends on Area Classi�er to have informationabout the themati area that the user is interested in, on the SoureBroker for the desription of the information soures available outsidethe system, and on the Soures Interfae Manager for interfaing to thesoures. The Results Synthesizer depends on the Info Searher for the
jaa-mas.tex; 16/01/2003; 18:43; p.17

www.manaraa.com

18 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniinformation onerning the query that the Info Searher asked, and onthe Museum to have the query results.Table I. Ators' apabilities (step 2).Ator Name N CapabilityArea Classi�er 1 get area spei�ation form2 lassify area3 provide area information4 provide servie desriptionInfo Searher 5 get area information6 �nd information soure7 ompose query8 query soure9 provide query informationprovide servie desriptionResults Synthesizer 10 get query information11 get query results12 provide query results13 synthesize area query resultsprovide servie desriptionSoures Interfae 14 wrap information soureManager provide servie desriptionSoures Broker 15 get soure desription16 lassify soure17 store soure desription18 delete soure desription19 provide soures informationprovide servie desriptionServies Broker 20 get servie desription21 lassify servie22 store servie desription23 delete servie desription24 provide servies informationUser Interfae 25 get user spei�ationManager 26 provide user spei�ation27 get query results28 present query results to the userprovide servie desription
Step 2. This step onsists in the identi�ation of the apabilitiesneeded by the ators to ful�ll their goals and plans. Capabilities an be

jaa-mas.tex; 16/01/2003; 18:43; p.18

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 19easily identi�ed by analyzing the extended ator diagram. In partiular,eah dependeny relationship an give plae to one or more apabilitytriggered by external events. To give an intuitive idea of this proesslet's fous on a spei� ator of the extended ator diagram, suh as theArea Classi�er, and onsider all the in-going and out-going dependen-ies, as shown in Figure 8. Eah dependeny is mapped to a apability.So, for instane, the dependeny for the resoure area spei�ation formalls for the apability get area spei�ation form, and so on. The AreaClassi�er's apabilities as well as the apabilities of the other ators ofthe extended ator diagram of Figure 7 are listed in Table I.
Info

Searcher

Info
Broker

query
information

area
information

Interfacing
to the eCulture

System

Services
Broker

Sources
Broker

sources
information

Sources
Interface
Manager

Interfacing
to the eCulture

System

Museum

source
description

User
Interface
Manager

query results

Area
Classifier

area
specification

form

interfacing
to the users

area
information

Results
Synthesizer

Citizen interfacing
to sources

services
information

services
descriptionFigure 8. Identifying ator apabilities from ator dependenies w.r.t. the AreaClassi�er (step 2).Step 3. The last step onsists of de�ning a set of agent types andassigning eah of them one or more di�erent apabilities (agent as-signment). Table II reports the agents assignment with respet to theapabilities identi�ed in Table I. Of ourse, many other apabilities
jaa-mas.tex; 16/01/2003; 18:43; p.19

www.manaraa.com

20 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniand agent types are needed in ase we onsider all the goals and plansassoiated with the omplete extended ator diagram.Table II. Agent types and their apabilities.Agent CapabilitiesQuery Handler 1, 3, 4, 5, 7, 8, 9, 10, 11, 12Classifier 2, 4Searher 6, 4Synthesizer 13, 4Wrapper 14, 4Agent Resoure Broker 15, 16, 17, 18, 19, 4Diretory Failitator 20, 21, 22, 23, 24, 4User Interfae Agent 25, 26, 27, 28, 4In general, the agents assignment is not unique and depends onthe designer. The number of agents and the apabilities assigned toeah of them are hoies driven by the analysis of the extend atordiagram and by the way in whih the designer think the system interm of agents. Tropos o�ers a set of pre-de�ned patterns reurrent inmulti-agent literature that an help the designer [21℄.3.4. Detailed designThe detailed design phase deals with the spei�ation of the agents'miro level. Agents' goals, beliefs, and apabilities, as well as ommuni-ation among agents are spei�ed in detail. Pratial approahes for thisativity are usually proposed within spei� development platforms anddepend on the features of the adopted agent programming language.In other words, this step is usually stritly related to implementationhoies. Moreover, the Objet Management Group (OMG) and theFoundation for Intelligent Physial Agents (FIPA) are supporting theextension of the Uni�ed Modeling Language (UML) [3℄ as the languagewhih should enable the spei�ation of agent systems [2℄. Agent UMLpakages modelling well-known agent ommuniation protools, suhas the Contrat Net, are already available [25℄.In Tropos, we adapt existing results from these approahes to agentsystem design. However, our detailed design step takes as input thespei�ations resulting from the arhitetural design phase and thereasons for a given element, designed at this level, an be traed bakto early requirement analysis.
jaa-mas.tex; 16/01/2003; 18:43; p.20

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 21
EE: inform(SIA, UIA, query results)

Query results

evaluate query
results

IE: (result set)

present empty present query
results results

IE: (empty result set)

Figure 9. Capability diagram represented as an AUML ativity diagram.During detailed design, we use UML ativity diagrams for repre-senting apabilities and plans, and we adopt a subset of the AUMLdiagrams proposed in [25℄ for speifying agent protools.Capability diagrams. The UML ativity diagram allows us to model aapability (or a set of orrelated apabilities) from the point of view ofa spei� agent. External events set up the starting state of a apabil-ity diagram; ativity nodes model plans, transition ars model events,and beliefs are modeled as objets. For instane, Figure 9 depits theapability diagram of the present query results apability of the UserInterfae Agent.Plan diagrams. Eah plan node of a apability diagram an be furtherspei�ed by UML ativity diagrams. For instane, Figure 10 depitsthe plan evaluate query results orresponding to the apability depitedin Figure 9. The plan evaluate query results is ativated by the arrivalof the query results from the Synthesizer, and it ends storing an emptyor non-empty result set. Query results are ompared to a set of possibleresult models ontained in an agent's beliefs. Possible errors during theomparison end the plan without any side e�et. If there are no errors,the plan ends suessfully storing a result set onform to the foundresult model. The plan an end suessfully also when there are noresult models omparable to the query results. In this ase, the agentstores an empty result set.
jaa-mas.tex; 16/01/2003; 18:43; p.21

www.manaraa.com

22 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini
read query

results

EE: inform(SIA, UIA, query results)

find result
model

compare results
vs. model

Store result
set

store empty
result set

no

not found?

no

unrecoverable errors?

yes

yes

Figure 10. Plan diagram for the plan evaluate query. Ovals orrespond to simple oromplex ations, ars to transitions from an ation to the subsequent one, start andend states transitions to events.Agent interation diagrams. Here AUML sequene diagrams an beexploited. In AUML sequene diagrams, agents orrespond to objets,whose life-line is independent from the spei� interation to be mod-eled (in UML an objet an be reated or destroyed during the intera-tion); ommuniation ats between agents orrespond to asynhronousmessage ars.Figure 11 shows a simple part of the ommuniative interationamong the system's agents and the user. In partiular, the diagrammodels the interation among the user (itizen), the User Interfae Agent(UI), the Diretory Failitator (DF), and the Query Handler (QH). The
jaa-mas.tex; 16/01/2003; 18:43; p.22

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 23
UI: Agent DF: Agent QH: Agent

citizen : user

info request

query specs. request

query spec. submission

query for service

QH agent address

query committment

results communication

results presentation

Figure 11. Agent interation diagram. Boxes represent agents and arrows modelommuniative ats.interation starts with an info request by the user to the UI, and endswith the results presentation by the UI to the user. The UI asks the userfor the query spei�ations, and when the user replays, the UI asks theDF for the address of an agent able to provide the requested servie.The DF sends the QH address to the UI so that the UI an ask theQH for the servie. Finally, the QH sends the results to the UI, andthen the UI presents the results to the user. The template pakages
jaa-mas.tex; 16/01/2003; 18:43; p.23

www.manaraa.com

24 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniof sequene diagrams, proposed in [25℄ for modeling Agent InterationProtools, an be straightforwardly applied to our example. In suh aase, eah ommuniative at of Figure 11 must be analyzed in detail.3.5. Implementation Using JACKThe BDI platform hosen for the implementation is JACK IntelligentAgents [12℄, an agent-oriented development environment built on topand fully integrated with Java. Agents in JACK are autonomous soft-ware omponents that have expliit goals (desires) to ahieve or eventsto handle. Agents are programmed with a set of plans in order tomake them apable of ahieving goals. The implementation ativityfollows in a natural way the detailed design spei�ation desribed inSetion 3.4. In fat, the notions introdued in that setion have a diretorrespondene with the following JACK's onstruts, as explainedbelow:� Agent. A JACK agent is used to de�ne the behavior of an intel-ligent software agent. This inludes the apabilities an agent has,the types of messages and events it responds to and the plans ituses to ahieve its goals.� Capability. A JACK apability an inlude plans, events, beliefsand other apabilities. An agent an be assigned a number ofapabilities. Furthermore, a given apability an be assigned todi�erent agents. JACK's apability notion provides a means toreuse.� Belief. The JACK database amounts to a generalized relationaldatabase that desribes a set of beliefs asribed to an agent.� Event. Internal and external events spei�ed in the detailed designmap to JACK's event onstrut. In JACK, an event desribes atriggering ondition for agents ations.� Plan. The plans ontained in a apability spei�ation resultingfrom a detailed design map to JACK plans. In JACK, a plan is asequene of instrutions the agent follows to try to ahieve goalsand deal with ourenes of events.Figure 12 depits the JACK layout presenting the eCulture Systemanalyzed in the previous setions. The �rst window fouses on thedelaration of the �ve agents, and in partiular on the User InterfaeAgent and its apabilities. The de�nition for the User Interfae Agent isas follows:
jaa-mas.tex; 16/01/2003; 18:43; p.24

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 25

Figure 12. JACK Developing Environment for the eCulture projet.publi agent UserInterfae extends Agent {#has apability GetQueryResults;#has apability ProvideUserSpeifiation;#has apability GetUserSpeifiation;#has apability PresentQueryResults;#handles event InformQueryResults;#handles event ResultsSet; }The seond window lists all the apabilities assoiated with theagents of the system. The apability present query results, analyzed inFigure 9, is de�ned as follows:publi apability PresentQueryResults extends Capability {#handles external event InformQueryResults;#posts event ResultsSet ;#posts event EmptyResultsSet ;#private database QueryResults ();#private database ResultsModel ();#uses plan EvaluateQueryResults;#uses plan PresentEmptyResults;#uses plan PresentResults; }The last window presents the plans assoiated with the apabilitypresent query results. The plan evaluate query results, analyzed in detail
jaa-mas.tex; 16/01/2003; 18:43; p.25

www.manaraa.com

26 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniin the previous setion (i.e., the plan evaluate query desribed in theplan diagram of Figure 10), is de�ned as follows:publi plan EvaluateQueryResults extends Plan {#handles event InformQueryResults ev;stati boolean relevant(InformQueryResults ev) {return true}stati model md;stati queryResults qr;body (){ if (readQueryResults(qr)){ if (findResultModel(qr,md)){ if(ompareResultModel(md)) {storeResults(qr,md)} }else { storeEmptyResults(); }}else { System.err(1); }}}4. The Development ProessThe previous setions introdued the primitive onepts supported byTropos and the di�erent kinds of modeling ativities one performsduring a Tropos-based software development projet. In this setion,we fous on the generi design proess through whih these modelsare onstruted [19℄. The proess is basially one of analyzing goals onbehalf of di�erent ators, and is desribed in terms of a non determinis-ti onurrent algorithm, inluding a ompleteness riterion. Note thatthis proess is arried out by software engineers (rather than softwareagents) at design-time (rather than run-time).Intuitively, the proess begins with a number of ators, eah witha list of assoiated root goals (possibly inluding softgoals). Eah rootgoal is analyzed from the perspetive of its respetive ator, and assubgoals are generated, they are delegated to other ators, or the atortakes on the responsibility of dealing with them him/her/itself. Thisanalysis is arried out onurrently with respet to eah root goal.Sometimes the proess requires the introdution of new ators whihare delegated goals and/or tasks. The proess is omplete when all goalshave been dealt with to the satisfation of the ators who want them(or the designers thereof.)Assume that atorList inludes a �nite set of ators, also that thelist of goals for ator is stored in goalList(ator). In addition, weassume that agenda(ator) inludes the list of goals ator has under-taken to ahieve personally (with no help from other ators), along withthe plan that has been seleted for eah goal. Initially, agenda(ator)
jaa-mas.tex; 16/01/2003; 18:43; p.26

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 27is empty. dependenyList inludes a list of dependenies among ators,while apabilityList(ator) inludes hgoal; plani pairs indiatingthe means by whih the ator an ahieve partiular goals. Finally,goalGraph stores a representation of the goal graph that has beengenerated so far by the design proess. Initially, goalGraph ontainsall root goals of all initial ators with no links among them. We willtreat all of the above as global variables whih are aessed and/orupdated by the proedures presented below. For eah proedure, weuse as parameters those variables used within the proedure.global atorList; goalList; agenda; dependenyList;apabilityList; goalGraph;proedure rootGoalAnalysis(atorList; goalList; goalGraph)beginrootGoalList = nil;for ator in atorList dofor rootGoal in goalList(ator) dorootGoalList = add(rootGoal; rootGoalList);rootGoal:ator = ator;end ;end ;end ;onurrent for rootGoal in rootGoalList dogoalAnalysis(rootGoal; atorList)end onurrent for ;if not[satisfied(rootGoalList; goalGraph)℄then fail;end proedureThe proedure rootGoalAnalysis onduts onurrent goal anal-ysis for every root goal. Initially, root goal analysis is onduted forall initial goals assoiated with ators in atorList. Later on, moreroot goals are reated as goals are delegated to existing or new ators.Note that the onurrent for statement spawns a onurrent all togoalAnalysis for every element of the list rootGoalList. Moreover,more alls to goalAnalysis are spawn as more root goals are added torootGoalList. onurrent for is assumed to terminates when all itsthreads do. The prediate satisfied heks whether all root goals ingoalGraph are satis�ed. This prediate is omputed in terms of a labelpropagation algorithm suh as the one desribed in [22℄. Its details arebeyond the sope of this paper. rootGoalAnalysis sueeds if there isa set of non-deterministi seletions within the onurrent exeutionsof goalAnalysis proedures whih leads to the satisfation of all rootgoals.
jaa-mas.tex; 16/01/2003; 18:43; p.27

www.manaraa.com

28 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. PeriniThe proedure goalAnalysis onduts onurrent goal analysis forevery subgoal of a given root goal. Initially, the root goal is plaedin pendingList. Then, onurrent for selets onurrently goalsfrom pendingList and for eah deides non-deterministially whetherit will be expanded, adopted as a personal goal, delegated to an exist-ing or new ator, or whether the goal will be treated as unsatis�able('denied'). When a goal is expanded, more subgoals are added topendingList and goalGraph is augmented to inlude the new goalsand their relationships to their parent goal. Note that the seletionof an ator to delegate a goal is also non-deterministi, and so isthe reation of a new ator. The three non-deterministi operationsin goalAnalysis are highlighted with itali-bold font. These are thepoints where the designers of the software system will use their reativein designing the system-to-be.proedure goalAnalysis(rootGoal; atorList)pendingList = add(rootGoal; nil);onurrent for goal in pendingList dodeision = deideGoal(goal)ase of deisionexpand :beginnewGoalList = expandGoal(goal; goalGraph);for newGoal in newGoalList donewGoal:ator = goal:ator;add(newGoal; pendingList);end ;end ;solve : aeptGoal(goal; agenda(goal:ator));delegate :beginator = seletAtor(atorList);delegateGoal(goal; ator; rootGoalList; dependenyList);end ;newAtor :beginator = newAtor(goal);atorList = add(ator; atorList);delegateGoal(goal; ator; rootGoalList; dependenyList);end ;fail : goal:label =0denied0;end ase of ;end onurrent for ;
jaa-mas.tex; 16/01/2003; 18:43; p.28

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 29end proedureFinally, we speify two of the sub-proedures used in goalAnalysis,for the lak of spae, others are left to the imagination of the reader.delegateGoal adds a goal to an ator's goal list beause that goalhas been delegated to the ator. This goal now beomes a root goal(with respet to the ator it has been delegated to), so another all togoalAnalysis is spawn by rootGoalAnalysis. Also, dependenyListis updated. The proedure aeptGoal simply selets a plan for a goalthe ator will handle personally from the ator's apability list. Theproess we present here does not provide for extensions to a apabilitylist to deal with a newly assigned goal.proedure delegateGoal(goal; toAtor; rootGoalList;dependenyList)beginadd(goal; goalList(toAtor));add(goal; rootGoalList);goal:ator = toAtor;add(hgoal:ator; toAtor; goali; dependenyList);endend proedureproedure aeptGoal(goal; agenda)beginplan = seletPlan(goal; apabilityList(goal:ator));add(hgoal; plani; agenda(goal:ator));goal:label =0 satisfied0;endend proedureDuring early requirements, this proess analyzes initially-identi�edgoals of external ators ("stakeholders"). At some point (late require-ments), the system-to-be is introdued as another ator and is delegatedsome of the subgoals that have been generated from this analysis. Dur-ing arhitetural design, more system ators are introdued and aredelegated subgoals to system-assigned goals. Apart from generatinggoals and ators in order to ful�ll initially-spei�ed goals of exter-nal stakeholders, the development proess inludes spei�ation stepsduring eah phase whih onsist of further speifying eah node of amodel suh as those shown in Figures 3-4. Spei�ations are given in aformal language (Formal Tropos) desribed in detail in [16℄. These spe-i�ations add onstraints, invariants, pre- and post-onditions whih
jaa-mas.tex; 16/01/2003; 18:43; p.29

www.manaraa.com

30 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Periniapture more of the semantis of the subjet domain. Moreover, suhspei�ations an be simulated using model heking tehnology forvalidation purposes [16, 10℄.Table III. Tropos language metamodel. The four level arhiteture.Level Desription ExamplesMeta-Metamodel Spei�es language Attribute,strutural elements EntityMetamodel An instane of the meta-metamodel Ator, Goal,De�nes knowledge level notions PlanDomain An instane of the metamodel PAT, Citizen,Models appliation domain entities MuseumInstane Instantiates domain model elements John: instane ofCitizen
5. The modeling languageThe modeling language is at the ore of the Tropos methodology. Inthis setion, the abstrat syntax of the language is de�ned in terms of aUML metamodel. Following standard approahes [26℄, the metamodelhas been organized in four levels, as shown in Table III. The four-layerarhiteture makes the Tropos language extensible in the sense that newonstruts an be added. The semantis of the language (augmentedwith a powerful fragment of Temporal Logi [11℄) is handled in [16℄and will not be disussed here.The Meta-Metamodel level provides the basis for metamodel exten-sions. In partiular, the meta-metamodel ontains language primitivesthat allows for the inlusions of onstruts suh as those proposed in[16℄. The Metamodel level provides onstruts for modeling knowledgelevel entities and onepts. The Domain level ontains a representa-tion of entities and onepts of a spei� appliation domain, builtas instanes of the metamodel level onstruts. So, for instane, theexamples used in Setion 2 illustrate portions of the eCulture domainmodel. The Instane level ontains instanes of the domain model.

jaa-mas.tex; 16/01/2003; 18:43; p.30

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 31Before moving to the details of the metamodels for the oneptsator, goal and plan2, let us present the Tropos model and diagrams.A Tropos model is a direted labeled graph whose nodes are in-stanes of metalasses of the metamodel, namely ator, goal, plan andresoure, and whose ars are instanes of the metalasses representingrelationships between them, dependeny, means-end analysis, ontribu-tion and AND/OR deomposition.Eah element in the model has its own graphial representation. Inpartiular, we use two types of diagram for visualizing the model: theator diagram and the goal diagram.An ator diagram is a graph, where eah node represents an ator,and eah ar represents a dependeny between the two onnetingnodes. The ar is labeled by a spei� dependum. Examples of simpleator diagrams have been presented in Figure 1 and in Figure 6.A goal diagram represents the perspetive of a spei� ator. It isdrawn as a balloon and ontains graphs whose nodes are goals (ovals)and /or plans (hexagonal shape) and whose ars are the di�erent rela-tionships that an be identi�ed among its nodes.AUML ativity diagrams and AUML interation diagrams are usedto represent, respetively, properties (apability and plan diagrams) andagents' interation.Aording to the spei� proess development phase we are onsid-ering, we an de�ne di�erent views of the model. For instane, the earlyrequirement view of the model will be omposed of a set of ator andgoal diagrams onerning the soial ators modeling, while the detaileddesign view will be omposed of a set of AUML diagrams speifyingthe agents's mirolevel.5.1. The onept of AtorA portion of the Tropos metamodel onerning the onept of atoris shown in the UML lass diagram of Figure 13. Ator is representedas a UML lass. An ator an have 0 : : : n goals. The UML lass Goalrepresents here both hard and softgoals. A goal is wanted by 0 : : : nators, as spei�ed by the UML assoiation relationship. An ator anhave 0 : : : n beliefs and, onversely, beliefs are believed by 1 : : : n ators.An ator dependeny is a quaternary relationship represented as aUML lass. A dependeny relates respetively a depender, dependee,and dependum (as de�ned earlier), also an optional reason for thedependeny (labelled why). Examples of dependeny relationships are2 The metamodels onerning the other onepts are de�ned analogously withthe partial desription reported here. A omplete desription of the Tropos languagemetamodel an be found in [30℄.
jaa-mas.tex; 16/01/2003; 18:43; p.31

www.manaraa.com

32 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perinishown in Figures 1, 4, and 6. The early requirements model depited inFigure 1, for instane, shows a softgoal dependeny between the atorsCitizen and PAT. Its dependum is the softgoal taxes well spent, whilethe ators Citizen and PAT play the roles of depender and dependee,respetively
Dependency

Actor

dependee depender

Belief

dependum Plan

Resource

Goal

{XOR}{XOR}

dependum

dependum

why
0..1

why
0..1

why
0..1

wants
0..n

has

1..n0..n

are
believed

wanted
by

0..nFigure 13. The UML lass diagram speifying the ator onept in the Troposmetamodel.5.2. The onept of GoalThe onept of goal is represented by the lass Goal in the UMLlass diagram depited in Figure 14. The distintion between hard andsoftgoals is aptured through a speialization of Goal into sublassesHardgoal and Softgoal, respetively.Goals an be analyzed, from the point of view of an ator, performingmeans-end analysis, ontribution analysis and AND/OR deomposition(listed in order of strength). Let us onsider these in turn.Means-end Analysis is a ternary relationship de�ned among an ator,whose point of view is represented in the analysis, a goal (the end), anda Plan, Resoure or Goal (the means). Means-end analysis is a weakform of analysis, onsisting of a disovery of goals, plans or resouresthat an provide means for reahing a goal. Means-end analysis is
jaa-mas.tex; 16/01/2003; 18:43; p.32

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 33used in the model shown in Figure 3, where the goals eduate itizensand provide eCultural servies, as well as the softgoal provide interestingsystems are means for ahieving the goal inrease internet use.Contribution Analysis is a ternary relationship between an ator, whosepoint of view is represented, and two goals. Contribution analysis strivesto identify goals that an ontribute positively or negatively towardsthe ful�llment of a goal (see assoiation relationship labelled ontributesto in Figure 14). A ontribution an be annotated with a qualitativemetri, as used in [8℄, denoted by +;++;�;��. In partiular, if thegoal g1 ontributes positively to the goal g2, with metri ++ then if g1is satis�ed, so is g2. Analogously, if the plan p ontributes positively tothe goal g, with metri ++, this says that p ful�lls g. A + label for agoal or plan ontribution represents a partial, positive ontribution tothe goal being analyzed. With labels ��, and � we have the dual situ-ation representing a suÆient or partial negative ontribution towardsthe ful�llment of a goal. Examples of ontribution analysis are shownin Figure 3. For instane, the goal funding museums for own systemsontributes positively to both the softgoals provide interesting systemsand good ultural servies, and the latter softgoal ontributes positivelyto the softgoal good servies.Contribution analysis applied to softgoals is often used to evaluatenon-funtional (quality) requirements.AND/OR Deomposition is also a ternary relationship whih de�nes anAND- or OR-deomposition of a root goal into subgoals. The partiularase where the root goal g1 is deomposed into a single subgoal g2, isequivalent to a ++ ontribution from g2 to g1.5.3. The onept of PlanThe onept of plan in Tropos is spei�ed by the lass diagram depitedin Figure 15. Means-end analysis and AND/OR deomposition, de�nedabove for goals, an be applied to plans also. In partiular, AND/ORdeomposition allows for modeling the plan struture.6. Related WorkAs stated in the introdution and also presented in [7℄, the most im-portant feature of the Tropos methodology is that it aspires to spanthe overall software development proess, from early requirements toimplementation. This is represented in Figure 16 whih shows the rel-ative overage of Tropos as well as i* [36℄, KAOS [13℄, GAIA [34℄,
jaa-mas.tex; 16/01/2003; 18:43; p.33

www.manaraa.com

34 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini
Means-Ends analysis

Goal

{XOR}{XOR}

mean

Resource

Plan

mean

mean

AND-OR decomposition

OR-decomposition AND-decomposition

0..n0..n

1..n

Hardgoal Softgoal

root

Contribution

contributes to

contributed by

Actor
pointview

end

1..n

1..n

Figure 14. The UML lass diagram speifying the the goal onept in the Troposmetamodel.AAII [20℄ and MaSE [14℄, and AUML [25, 2, 6℄. Many other agentoriented software methodologies have been proposed in the past, see forinstane [9, 32, 4, 29℄. The onsiderations raised for the methodologiesshown in Figure 16 apply to these latter methodologies as well.While Tropos overs the full range of software development phases,it is at the same time well-integrated with other existing work. Thus,for early and late requirements analysis, it takes advantage of workdone in the Requirements Engineering ommunity, and in partiularEri Yu's i* methodology [36℄. As already noted, muh of the Troposmethodology an be ombined with non-agent (e.g., objet-oriented orimperative) software development tehniques. For example, one maywant to use Tropos for early development phases and then use UML [3℄for later phases. At the same time, work on AUML [25℄ allows us toexploit existing UML tehniques adapted for agent-oriented softwaredevelopment. As indiated in Figure 16, our idea is to adopt AUMLfor the detailed design phase. An example of how this an be done isgiven in [27℄.
jaa-mas.tex; 16/01/2003; 18:43; p.34

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 35
Means-Ends analysis

Plan

{XOR}

mean

Resource
mean

AND-OR decomposition

OR-decomposition AND-decomposition

0..n0..n

1..n

root

Actor

pointview

end

1..n

1..n

0..n

Goal
is fulfilled

pointview

1..n

is capable of
1..n

Figure 15. The UML lass diagram speifying the plan onept in the Troposmetamodel.
The metamodel presented in Setion 5 has been developed in thesame spirit as the UML metamodel for lass diagrams. A omparisonbetween UML lass diagrams and the diagrams presented in Setion 5emphasizes the distint representational and ontologial levels used forlass diagrams and ator diagrams (the former being at the softwarelevel, the latter at the knowledge level). This ontrast also de�nes thekey di�erene between objet-oriented and agent-oriented developmentmethodologies. Agents (and ator diagrams) annot be thought as aspeialization of objets (and lass diagrams), as argued in previouspapers. The di�erene is rather the result of an ontologial and repre-sentational shift. Finally, it should be noted that inheritane, a ruialnotion for UML diagrams, plays no role in ator diagrams. This isn'tyet a �nal deision. However inheritane, at the urrent state of the artseems more useful at a software, rather than a knowledge, level. Thisview is impliit in our deision to adopt AUML for the detailed designphase.

jaa-mas.tex; 16/01/2003; 18:43; p.35

www.manaraa.com

36 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini
Tropos

Gaia

AAII and Mase

AUML

Requirements Requirements
ArchitecturalLateEarly

Design
Detailed
Design

Kaos

i*

Figure 16. Comparison of Tropos with other software development methodologies.7. Conlusions and future workThis paper provides a detailed aount of Tropos, a new agent orientedsoftware development methodology whih spans the software devel-opment proess from early requirements to implementation for agentoriented software. The paper presents and disusses the �ve phasessupported by Tropos, the development proess within eah phase, themodels reated through this proess, and the diagrams used to desribethese models.Throughout, we have emphasized the uniform use of a small set ofknowledge level notions during all phases of software development. Wehave also provided an iterative, ator and goal based, re�nement al-gorithm whih haraterizes the re�nement proess during eah phase.This re�nement proess, of ourse, is instantiated di�erently duringeah phase.Of ourse, the Tropos methodology is not intended for any type ofsoftware. For system software (suh as a ompiler) or embedded soft-ware, the operating environment of the system-to-be is an engineeringartifat, with no identi�able stakeholders. In suh ases, traditionalsoftware development tehniques may be most appropriate. However,a large and growing perentage of software does operate within open,dynami organizational environments. For suh software, the Troposmethodology and others in the same family apply and promise to de-liver more robust, reliable and usable software systems. The Troposmethodology in its urrent form is also not suitable for sophistiatedsoftware agents requiring advaned reasoning mehanisms for plans,goals and negotiations. Further extensions will be required to the Tro-
jaa-mas.tex; 16/01/2003; 18:43; p.36

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 37pos methodology, mostly at in detailed design phase, to address thislass of software appliations.Our long term objetive is to provide a detailed aount of theTropos methodology. Objet-oriented and strutured software devel-opment methodologies are examples of the breadth and depth of detailexpeted by pratitioners who use a partiular software developmentmethodology. Of ourse, muh remains to be done towards ahievingthis goal. We are urrently working on several open problems, suhas the development of formal analysis tehniques for Tropos [16℄; theformalization of the transformation proess in terms of primitive trans-formations and re�nement strategies [5℄; the de�nition of a atalogueof arhitetural styles for multi-agent systems whih adopt oneptsfrom organization theory and strategi allianes literature [21℄; and thedevelopment of tools whih support the methodology during partiularphases.We onsider a broad overage of the software development proessas essential for agent-oriented software engineering. It is only by goingup to the early requirements phase that an agent-oriented methodologyan provide a onvining argument against other, for instane objet-oriented, methodologies. Spei�ally, agent-oriented methodologies areinherently intentional, founded on notions suh as those of agent, goal,plan, et. Objet-oriented ones, on the other hand, are inherently notintentional, sine they are founded on implementation-level ontologi-al primitives. This fundamental di�erene shows most learly whenthe software developer is fousing on the (organizational) environmentwhere the system-to-be will eventually operate. Understanding suh anenvironment alls (more preisely, ries out) for knowledge level mod-eling primitives. The agent-oriented programming paradigm is the onlyprogramming paradigm that an graefully and seamlessly integrate theintentional models of early development phases with implementationand run-time phases. This is the argument that justi�es agent-orientedsoftware development, and at the same time promises for it a brightfuture. AknowledgementsWe thank all Tropos Projet partiipants working in Trento, Torontoand elsewhere for useful omments, disussions and feedbak. Spe-ial thanks to the anonymous reviewers of this paper for their helpfulfeedbak.
jaa-mas.tex; 16/01/2003; 18:43; p.37

www.manaraa.com

38 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. PeriniReferenes1. F. Giunhiglia and. Software Requirements: Objets, Funtions and States.Prentie Hall, 1993.2. B. Bauer, J. P. M�uller, and J. Odell. Agent UML: A formalism for speify-ing multiagent software systems. Int. Journal of Software Engineering andKnowledge Engineering, 11(3):207{230, 2001.3. G. Booh, J. Rambaugh, and J. Jaobson. The Uni�ed Modeling LanguageUser Guide. The Addison-Wesley Objet Tehnology Series. Addison-Wesley,1999.4. F.M.T. Brazier, B. Dunin Kepliz, N. Jennings, and J. Treur. DESIRE:Modelling Multi-Agent Systems in a Compositional Formal Framework. In-ternational Journal of Cooperative Information Systems, 9(1), 1997.5. P. Bresiani, A. Perini, P. Giorgini, F. Giunhiglia, and J. Mylopoulos. Mod-eling early requirements in tropos: a transformation based approah. InWooldridge et al. [32℄.6. G. Caire, F. Leal, P. Chainho, R. Evans, F. Garijo, J. Gomez, J. Pavon,P. Kearney, J. Stark, and P. Massonet. Agent oriented analysis usingMESSAGE/UML. In Wooldridge et al. [32℄.7. J. Castro, M. Kolp, and J. Mylopoulos. Towards Requirements-Driven In-formation Systems Engineering: The Tropos Projet. Information Systems.Elsevier, Amsterdam, the Netherlands.8. L. K. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-FuntionalRequirements in Software Engineering. Kluwer Publishing, 2000.9. P. Cianarini and M. Wooldridge, editors. Agent-Oriented Software En-gineering, volume 1957 of Leture Notes in AI. Springer-Verlag, Marh2001.10. A. Cimatti, E. M. Clarke, F. Giunhiglia, and M. Roveri. NuSMV: a new sym-boli model heker. International Journal on Software Tools for TehnologyTransfer (STTT), 2(4), Marh 2000.11. E. M. Clarke and E. A. Emerson. Design and Synthesis of SynhronizationSkeletons using Branhing Time Temporal Logi. In D. Kozen, editor, Pro-eedings of the Workshop on Logis of Programs, volume 131 of Leture Notesin Computer Siene, pages 52{71, Yorktown Heights, New York, May 1981.Springer-Verlag.12. M. Coburn. JACK Intelligent Agents User Guide. AOS Teh-nial Report, Agent Oriented Software Pty Ltd, July 2000.http://www.jakagents.om/dos/jak/html/index.html.13. A. Dardenne, A. van Lamsweerde, and S. Fikas. Goal-direted requirementsaquisition. Siene of Computer Programming, 20(1{2):3{50, 1993.14. S. A. Deloah. Analysis and Design using MaSE and agentTool. In 12th Mid-west Arti�ial Intelligene and Cognitive Siene Conferene (MAICS 2001),Miami University, Oxford, Ohio, Marh 31 - April 1 2001.15. A. Fuxman, P. Giorgini, M. Kolp, and J. Mylopoulos. Information Systems asSoial Strutures. In Seond International Conferene on Formal Ontologiesfor Information Systems (FOIS-2001), Ogunquit, USA, Otober 17-19 2001.16. A. Fuxman, M. Pistore, J. Mylopoulos, and P. Traverso. Model heking earlyrequirements spei�ation in Tropos. In Pro. of the 5th IEEE InternationalSymposium on Requirements Engineering, Toronto, CA, August 2001.17. P. Giorgini, J. Mylopoulos, E. Nihiarelli, and R. Sebastiani. Reasoning withGoal Models. In S. Spaapietra, S. T. Marh, and Y. Kambayashi, editors, 21st
jaa-mas.tex; 16/01/2003; 18:43; p.38

www.manaraa.com

TROPOS: An Agent-Oriented Software Development Methodology 39International Conferene on Coneptual Modeling (ER02), Tampere, Finland,volume 2503 of Leture Notes in Computer Siene. Springer-Verlag, 2002.18. P. Giorgini, A. Perini, J. Mylopoulos, F. Giunhiglia, and P. Bresiani. Agent-oriented software development: A ase study. In S. Sen J.P. M�uller, E. Andreand C. Frassen, editors, Proeedings of the Thirteenth International Confereneon Software Engineering - Knowledge Engineering (SEKE01), Buenos Aires -ARGENTINA, June 13 - 15 2001.19. F. Giunhiglia, J. Mylopoulos, and A. Perini. The Tropos Software Devel-opment Methodology: Proesses, Models and Diagrams. In F. Giunhiglia,J. Odell, and G. Wei�, editors, Agent-Oriented Software Engineering III, ThirdInternational Workshop (AOSE2002), Bologna, Italy, LNCS. Springer-Verlag,2003 (to appear).20. D. Kinny, M. George�, and A. Rao. A Methodology and Modelling Tehniquefor Systems of BDI Agents. In W. Van de Velde and J. W. Perram, editors,Agents Breaking Away: Pro. of the 7th European Workshop on Modelling Au-tonomous Agents in a Multi-Agent World, Springer-Verlag: Berlin, Germany,1996.21. M. Kolp, P. Giorgini, and J. Mylopoulos. An goal-based organizational perspe-tive on multi-agents arhitetures. In Pro. of the 8th Int. Workshop on AgentTheories, Arhitetures, and Languages (ATAL-2001), Seattle, WA, August2001.22. J. Mylopoulos, L. K. Chung, and B. A. Nixon. Representing and using non-funtional requirements: A proess-oriented approah. IEEE Transations onSoftware Engineering, June 1992.23. A. Newell. The Knowledge Level. Arti�ial Intelligene, 18:87{127, 1982.24. H. Nwana. Software agents: An overview. Knowledge Engineering ReviewJournal, 11(3), November 1996.25. J. Odell, H. Parunak, and B. Bauer. Extending UML for agents. In G. Wagner,Y. Lesperane, and E. Yu, editors, Pro. of the Agent-Oriented InformationSystems workshop at the 17th National onferene on Arti�ial Intelligene,pages 3{17, Austin, TX, 2000.26. OMG. OMG Uni�ed Modeling Language Spei�ation, version 1.3, alphaedition, January 1999.27. A. Perini, P. Bresiani, F. Giunhiglia, P. Giorgini, and J. Mylopoulos. AKnowledge Level Software Engineering Methodology for Agent Oriented Pro-gramming. In Pro. of the 5th Int. Conferene on Autonomous Agents,Montreal CA, May 2001. ACM.28. A.S. Rao and M.P. George�. Modelling rational agents within a BDI-arhiteture. In Proeedings of Knowledge Representation and Reasoning(KRR-91) Conferene, San Mateo CA, 1991.29. J. Sabater, C. Sierra, S. Parsons, and N. R. Jennings. Using Multi-ContextSystems to Engineer Exeutable Agents. In N. R. Jennings and L. Lesperane,editors, Proeedings of the 6th International Workshop on Agent Theories, Ar-hitetures, and Languages (ATAL-99), number 1757 in LNCS, pages 277{294.Springer-Verlag, 1999.30. F. Sanniol�o, A. Perini, and F. Giunhiglia. The Tropos modeling language. aUser Guide. Tehnial report, ITC-irst, Deember 2001.31. G. Weiss, editor. Multiagent System: a modern approah to Distributed AI.MIT Press, 1999.
jaa-mas.tex; 16/01/2003; 18:43; p.39

www.manaraa.com

40 P. Bresiani, P. Giorgini, F. Giunhiglia, J. Mylopoulos, and A. Perini32. M. Wooldridge, P. Cianarini, and G. Weiss, editors. Pro. of the 2nd Int.Workshop on Agent-Oriented Software Engineering (AOSE-2001), Montreal,CA, May 2001.33. M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and pratie.Knowledge Engineering Review, 10(2), 1995.34. M. Wooldridge, N. R. Jennings, and D. Kinny. The Gaia methodology foragent-oriented analysis and design. Journal of Autonomous Agents and Multi-Agent Systems, 3(3), 2000.35. E. Yu. Modeling organizations for information systems requirements en-gineering. In Proeedings of the First IEEE International Symposium onRequirements Engineering, pages 34{41, San Jose, January 1993. IEEE.36. E. Yu. Modelling Strategi Relationships for Proess Reengineering. PhD thesis,University of Toronto, Department of Computer Siene, 1995.37. E. Yu. Agent-oriented modeling: Software versus the world. In Wooldridgeet al. [32℄.38. E. Yu and J. Mylopoulos. Understanding `why' in software proess modeling,analysis and design. In Proeedings Sixteenth International Conferene onSoftware Engineering, Sorrento, Italy, May 1994.39. E. Yu and J. Mylopoulos. Using goals, rules, and methods to support reasoningin business proess reengineering. International Journal of Intelligent Systemsin Aounting, Finane and Management, 1(5), January 1996.

jaa-mas.tex; 16/01/2003; 18:43; p.40

